Quantum Maxwell-Bloch Equations for Spontaneous Emission in Optical Semiconductor Devices
نویسندگان
چکیده
We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous optical semiconductor devices taking into account the quantum noise effects which cause spontaneous emission and amplified emission. Analytical expressions derived from the QMBE are presented for the spontaneous emission factor β and the far field pattern of amplified spontaneous emission in broad area quantum well lasers.
منابع مشابه
Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
We present quantum Maxwell-Bloch equations ~QMBE! for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quant...
متن کاملClassical Model of Quantum Noise with the FDTD Method
Numerical models based on the finite-difference time-domain (FDTD) method have been developed to simulate thermal noise and spontaneous emission. Both types of noise may have effects on optical systems. Though their origin lies in quantum mechanics, macroscopic systems in which the discreteness of light can be ignored make it possible to simulate the noise using classical numbers. The absorbing...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملSelf-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals
We theoretically demonstrate the population switching of quantum dots (QD’s), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC’s) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while ele...
متن کاملA Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کامل